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Goal: Trustworthy Classifiers

• The predictions of the classifier should be correct with high 
probability

• Cases:
• Closed world, iid data
• Open world, iid data

• Cases not considered:
• Changing world (concept drift, distribution change, covariate shift, etc.)
• Adversaries
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Key idea: A classifier should have a model of 
its own competence
• Given query 𝑥𝑥𝑞𝑞 and classifier 𝑓𝑓, Comp 𝑓𝑓, 𝑥𝑥𝑞𝑞 = 1 if the classifier is 

competent to classify 𝑥𝑥𝑞𝑞 and 0 otherwise
• The coverage of 𝑓𝑓 is the fraction of queries for which 𝑓𝑓 is competent:

• Cov 𝑓𝑓 = 𝑃𝑃𝒳𝒳 Comp 𝑓𝑓, 𝑥𝑥𝑞𝑞 = 1

• We want to find 𝑓𝑓 that maximizes coverage while guaranteeing 
competence
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Notation
• Input space 𝒳𝒳 of dimension 𝑑𝑑
• Output space 𝒴𝒴 = 1, … ,𝐾𝐾 classes
• True joint distribution 𝑃𝑃 𝑥𝑥, 𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑃𝑃 𝑦𝑦 𝑥𝑥
• Training data 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑁𝑁 , 𝑦𝑦𝑁𝑁 drawn from 𝑃𝑃(𝑥𝑥, 𝑦𝑦)
• Fitted function 𝑓𝑓:𝒳𝒳 ↦ Δ𝐾𝐾 the 𝐾𝐾-dimensional probability simplex
• 𝑓𝑓 𝑥𝑥 = �̂�𝑝 𝑦𝑦 = 1 𝑥𝑥 , … , �̂�𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥 class probability vector
• �𝑦𝑦 = arg max

𝑘𝑘
�̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 predicted class

• 𝐼𝐼 𝑢𝑢 is 1 if 𝑢𝑢 is true and 0 otherwise
• Some classifiers do not output probabilities (e.g., SVMs), but we will ignore 

this in our notation
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Types of Competence Models

• Calibrated probability models
• The predicted probability equals the true probability �̂�𝑝 𝑦𝑦 𝑥𝑥 = 𝑃𝑃(𝑦𝑦|𝑥𝑥)

• Competence Region models
• Define a region of competence, 𝒳𝒳𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⊆ 𝒳𝒳 such that ∀𝑥𝑥 ∈ 𝒳𝒳𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, �𝑦𝑦 is 

correct with probability 1 − 𝜖𝜖
• 𝒳𝒳𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is usually defined by thresholding the predicted probability or some 

other confidence function
• If �̂�𝑝 �𝑦𝑦 𝑥𝑥 ≥ 𝜏𝜏 then output �𝑦𝑦; else abstain
• If conf 𝑥𝑥 ≥ 𝜏𝜏 then output �𝑦𝑦; else abstain

• Conformal prediction
• Output a set 𝐶𝐶(𝑥𝑥) such that with probability 1 − 𝜖𝜖, 𝑦𝑦 ∈ 𝐶𝐶(𝑥𝑥) for all (𝑥𝑥,𝑦𝑦)
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Meeting 1: Calibrated Probabilities

• Reasons for Creating Calibrated Probabilities
• Reason 1: Rational Decision Making

• If 𝐿𝐿 𝑘𝑘,𝑘𝑘′ is the loss received if 𝑦𝑦 = 𝑘𝑘, then the expected loss of predicting 𝑘𝑘𝑘
is

• ∑𝑘𝑘 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 𝐿𝐿 𝑘𝑘, 𝑘𝑘′

• We can choose 𝑘𝑘𝑘 to minimize this expected loss

• We can consider other decisions including abstention. Let 𝐿𝐿(𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) be 
the cost of abstaining

• E.g., Cost of asking a person to make the decision
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Reason 2: Interpretability

• People can understand a probability statement like 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 = 0.8
better when the probability is well-calibrated
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Reason 3: System Integration

• It is easier to integrate multiple AI subsystems if they all work with 
well-calibrated probabilities

• Examples:
• Fusing multiple sensors
• Combining evidence from multiple sources
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Reason 4: Improved Accuracy

9
Linear classifier => Non-monotonic calibration curve. Calibration can make it monotonic!
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Improved Accuracy (2)
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Of course using a quadratic kernel 
gives AUC = 1.0 and ACC = 0.99



Improved Accuracy (3)

• In two-class problems, arg max
𝑘𝑘

�̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 is equivalent to 
�̂�𝑝 𝑦𝑦 = 1 𝑥𝑥 > 0.5

• Calibration can find the true 0.5 rather than an optimistic or 
pessimistic 0.5

• In multiclass problems, the effect can be stronger, especially for rare 
classes which can be very poorly calibrated

• Not that AUC will be unchanged if �̂�𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥) is monotonically 
increasing with 𝑃𝑃(𝑦𝑦 = 𝑘𝑘|𝑥𝑥)
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Calibrated Classifiers
• A function 𝑓𝑓 is well-calibrated if �̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 =
𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥

• Given a “calibration set” of data points and a classifier, we 
can compute a reliability diagram

• Divide [0,1] into 𝑀𝑀 bins (often 𝑀𝑀 = 10). Bins may be of equal 
width or of equal quantiles according to �𝑝𝑝 �𝑦𝑦 𝑥𝑥

• For bin 𝑎𝑎 ∈ 1, … ,𝑀𝑀 , let 𝐵𝐵𝑏𝑏 be the set of points whose 
probability scores �𝑝𝑝 �𝑦𝑦 𝑥𝑥 belong in bin 𝐵𝐵𝑏𝑏

• �𝑝𝑝 𝐵𝐵𝑏𝑏 = 1
𝐵𝐵𝑏𝑏

∑𝑥𝑥∈𝐵𝐵𝑏𝑏 �𝑝𝑝 �𝑦𝑦 𝑥𝑥 . This is the average predicted 

probability of the points in 𝐵𝐵𝑏𝑏
• �𝑃𝑃 𝐵𝐵𝑏𝑏 = 1

𝐵𝐵𝑏𝑏
∑𝑥𝑥∈𝐵𝐵𝑏𝑏 𝐼𝐼 �𝑦𝑦 = 𝑦𝑦 . This is the fraction of predictions 

that are correct.

• Calibration score
• ∑𝑏𝑏=1𝑀𝑀 �𝑝𝑝 𝐵𝐵𝑏𝑏 − �𝑃𝑃 𝐵𝐵𝑏𝑏

2
the summed squared calibration error
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Reliability Diagram (Naïve Bayes; ADULT)

Zadrozny & Elkan, 2002



Calibration Score and the Brier Score

• The Brier Score is a proper scoring rule for probabilistic models
• 𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1

𝑁𝑁
∑𝑖𝑖 �̂�𝑝 �𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝐼𝐼 �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 2

• It can also be written in terms of the bins as
• 𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1

𝑀𝑀
∑𝑏𝑏 𝑃𝑃𝑥𝑥 𝐵𝐵𝑏𝑏 �𝑝𝑝 𝐵𝐵𝑏𝑏 − �𝑃𝑃 𝐵𝐵𝑏𝑏

2 + 1
𝑀𝑀
∑𝑏𝑏 𝑃𝑃𝑥𝑥 𝐵𝐵𝑏𝑏 �𝑃𝑃 𝐵𝐵𝑏𝑏 1 − �𝑃𝑃 𝐵𝐵𝑏𝑏

• Here �𝑃𝑃(𝐵𝐵𝑏𝑏) is 𝐵𝐵𝑏𝑏 /𝑁𝑁
• The first term is the Calibration Score
• The second term is called the “Refinement Score”. It is minimized when 
�𝑃𝑃(𝐵𝐵𝑏𝑏) is near 0 or 1.

• So a classifier that minimizes the BrierScore seeks to be well-calibrated and
highly certain
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Improving Calibration does not necessarily 
Improve Refinement
• A classifier can be well-calibrated but useless

• Suppose 70% of the calibration data points belong to class 1
• Then always predict �𝑦𝑦 = 1 with �̂�𝑝 �𝑦𝑦 = 0.7
• This is perfectly calibrated but useless
• Note that the Refinement score will be large

• 0.7 × 0.3 = 0.21
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Calibration Method 1: Binning
• Fit a function 𝑔𝑔 to map �̂�𝑝 to 𝑃𝑃 and then replace �̂�𝑝 with 𝑔𝑔 �̂�𝑝
• “training data” consist of 

• �̂�𝑝𝑖𝑖 , 𝐼𝐼 �𝑦𝑦 = 𝑦𝑦𝑖𝑖 pairs
• Fixed-width Bins

• Sort the data by �̂�𝑝
• Let 𝐵𝐵1, … ,𝐵𝐵𝑀𝑀 each be of width 1

𝑀𝑀
• Estimate �𝑃𝑃 𝐵𝐵𝑏𝑏 for each bin
• 𝑔𝑔 �̂�𝑝 = �𝑃𝑃 𝐵𝐵𝑏𝑏 for the bin 𝐵𝐵𝑏𝑏 containing �̂�𝑝

• Quantile Bins
• Define the bins so that each bin contains 1

𝑀𝑀
of the training data
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Calibration Method 2: Platt Scaling
(Platt, 1999)

• 𝑔𝑔 �̂�𝑝;𝑎𝑎, 𝑎𝑎 = 1
1+𝑒𝑒𝑎𝑎+𝑏𝑏�𝑝𝑝

• Logistic regression with a single 
“feature” (�̂�𝑝)
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Method 3: Isotonic Regression

• Find the function 𝑔𝑔 that is 
monotonically increasing from 0 
to 1 and minimizes the Brier 
Score

• Pool-Adjacent Violators Algorithm
• Ayer, et al. (1955)
• Robertson, Wright, & Dykstra 

(1988)
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PAV 
Ayer, M., Brunk, H., Ewing, G., Reid, W., Silverman, E. (1955)

• Input: �̂�𝑝𝑖𝑖 ,𝑦𝑦𝑖𝑖 sorted in 
ascending order by �̂�𝑝𝑖𝑖

• Initialize �𝑚𝑚𝑖𝑖,𝑖𝑖 = 𝑦𝑦𝑖𝑖;𝑤𝑤𝑖𝑖,𝑖𝑖 = 1
• While ∃𝑎𝑎 𝑎𝑎. 𝑎𝑎. �𝑚𝑚𝑘𝑘,𝑖𝑖−1 ≥ �𝑚𝑚𝑘𝑘,𝑖𝑖

• 𝑤𝑤𝑘𝑘,𝑙𝑙 ≔ 𝑤𝑤𝑘𝑘,𝑖𝑖−1 + 𝑤𝑤𝑖𝑖,𝑙𝑙
• �𝑚𝑚𝑘𝑘,𝑙𝑙 ≔

𝑤𝑤𝑘𝑘,𝑖𝑖−1 �𝑐𝑐𝑘𝑘,𝑖𝑖−1+𝑤𝑤𝑖𝑖,𝑙𝑙 �𝑐𝑐𝑖𝑖,𝑙𝑙
𝑤𝑤𝑘𝑘,𝑙𝑙

• Insert �𝑚𝑚𝑘𝑘,𝑙𝑙 in place of �𝑚𝑚𝑘𝑘,𝑖𝑖−1 and 
�𝑚𝑚𝑘𝑘,𝑖𝑖

• Output the function
• �𝑚𝑚 �̂�𝑝 = �𝑚𝑚𝑖𝑖,𝑗𝑗 for �̂�𝑝 ∈ �̂�𝑝𝑖𝑖 , �̂�𝑝𝑗𝑗
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Method 4: Regularized Isotonic Regression

• Isotonic Regression can be rewritten as the solution to the following 
problem

• Choose �𝑃𝑃𝑖𝑖 to minimize
• 1
2
∑𝑖𝑖=1𝑁𝑁 �𝑃𝑃𝑖𝑖 − �̂�𝑝𝑖𝑖

2
+ 𝜆𝜆∑𝑖𝑖=1𝑁𝑁−1 �𝑃𝑃𝑖𝑖 − �𝑃𝑃𝑖𝑖+1 𝐼𝐼 �𝑃𝑃𝑖𝑖 > �𝑃𝑃𝑖𝑖+1 subject to 𝜆𝜆 = +∞

• Tibshirani, Hastie & Tibshirani (2011) developed mPAVA, which constructs 
the complete regularization path from 𝜆𝜆 = 0 to 𝜆𝜆 = ∞

• Efficient algorithm that produces a sequence of “near isotonic” regression models 
𝑔𝑔1, … ,𝑔𝑔𝑡𝑡 , …

• ENIR (Ensemble of Near Isotonic Regressions; Naeini & Cooper, 2018) 
computes the BIC score of each 𝑔𝑔𝑡𝑡, normalizes these scores, and then 
computes the weighted average of the models to obtain 𝑔𝑔
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Method 5: Other Flexible Models

• Splines (Lucena, 2018 arxiv 1809.07751)
• Piecewise linear functions via a tree-based decomposition (Leathart, 

Frank, Holmes, Pfahringer, 2017)
• Gaussian Processes (Song, Kull, Flach, 2018)
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Methods for Multiclass Classifiers

• Method 1: Normalized one-vs-rest calibration
• For each class 𝑘𝑘, learn a binary calibration function 𝑔𝑔𝑘𝑘 based on a one-vs-rest 

classifier
• Define 𝑔𝑔 �̂�𝑝 𝑦𝑦 = 1 𝑥𝑥 , … , �̂�𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥 as follows

• Let the predicted probability for class 𝑘𝑘 be 
𝑔𝑔𝑘𝑘 �̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥

∑𝑘𝑘′ 𝑔𝑔𝑘𝑘′ �̂�𝑝 𝑦𝑦 = 𝑘𝑘′ 𝑥𝑥
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Multiclass Method 2: Softmax Temperature 
Tuning (Guo et al, 2017)

• Let 𝐳𝐳 = 𝑧𝑧1, … , 𝑧𝑧𝐾𝐾 be the final layer outputs of a DNN (prior to the 
softmax)

• Define �̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 =
exp𝑧𝑧𝑘𝑘𝑇𝑇

∑𝑘𝑘′ exp
𝑧𝑧𝑘𝑘′
𝑇𝑇

= 𝜎𝜎𝑆𝑆𝑀𝑀
𝐳𝐳
𝑇𝑇

• Adjust 𝑇𝑇 to fit the calibration data
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Multiclass Methods 3 and 4: Generalized Platt 
Scaling
• Matrix Scaling

• Learn a matrix 𝐖𝐖 and vector 𝐛𝐛 to fit 𝜎𝜎𝑆𝑆𝑀𝑀(𝐖𝐖𝐳𝐳𝑖𝑖 + 𝐛𝐛) to a 1-hot encoding of 𝑦𝑦𝑖𝑖
• Vector Scaling

• Matrix scaling with 𝐖𝐖 = diag(𝐰𝐰)
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Experiments 1: Niculescu-Mizil & Caruana

• Insights
• Max-margin methods push �̂�𝑝 toward 0.5
• Naïve Bayes pushes �̂�𝑝 toward 1.0
• Calibration flattens out this distribution
• Max-margin methods are fit well by logistic regression (Platt scaling), which 

also needs relatively little data
• Isotonic Regression works well with Naïve Bayes but usually requires more 

calibration data
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Boosted Trees
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Boosted Trees after Platt Calibration
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Boosted Trees after Isotonic Regression 
Calibration
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10 Different Learning Algorithms 

28

Platt PlattIsotonic IsotonicPlatt histogram Platt histogram

�̂�𝑝 concentrated 
in the middle

Already well-
calibrated



29

Platt Isotonic Platt histogram

Sigmoid is not 
a good model 

for NB



How big does the calibration set need to be?

30

Platt: 500; Isotonic: 8000? Platt: 500; Isotonic: 4000 



Experiments 2: Guo, Pleiss, Sun & Weinberger

31

ResNet is much 
more confident

ResNet over-
confident!



What are the causes of bad calibration?

32
Note: ECE = mean absolute calibration error  ∑𝑏𝑏

𝐵𝐵𝑏𝑏
𝑁𝑁

�𝑃𝑃 𝐵𝐵𝑏𝑏 − �̂�𝑝 𝐵𝐵𝑏𝑏



Comparison on Multiple Tasks and 
Architectures
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Comparison against other methods
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Insights and Questions

• The simple Temperature Calibration model works well and works 
better than more complex generalizations of Platt Scaling

• Temperature Calibration can be derived as the solution to a maximum 
entropy optimization problem

• Maximize entropy of �𝑃𝑃 subject to (a) �𝑃𝑃 is a probability and (b) the sum of true 
class logits == mean value of all logits weighted by �𝑃𝑃

• Not clear by (b) makes sense

• Why didn’t they compare against Platt Scaling each class separately 
and then normalizing?
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Experiment 3: Naeini & Cooper (ENIR)

• 40 UCI and LibSVM benchmark 
datasets

• Classifiers: Naïve Bayes, Logistic 
Regression, SVM

• Hyperparameters tuned via 10x10-
fold cross-validation

• Calibration Algorithms:
• Isotonic Regression (IsoRegC)
• BBQ: Bayesian Quantile Binning 

(ensemble of quantile bin models)
• ENIR: Ensemble of Near Isotonic 

Regressions

• Calibration reuses the training data
• No comparison against Platt scaling 

or other model-based approaches
• Metrics:

• AUC = area under ROC curve
• ACC = accuracy 
• RMSE = square root of the Calibration 

score
• ECE = expected absolute calibration 

error
• MCE = maximum absolute calibration 

error
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Percentage Change

37

Naïve Bayes & 
LR ACC always 

improves

Calibration 
Metrics always 

improve

Accuracy improvements probably result from better thresholding



Logistic Regression

38

No significant change in AUC, ACC, ECE
Significant change in RMSE
Trend looks good
AUC, ACC should not improve unless calibration curve is non-monotonic



SVMs

39

No significant change in AUC, ACC, RMSE, ECE



Naïve Bayes

40

No significant change in AUC or ACC (surprisingly!)
Significant improvements in all calibration metrics (not surprisingly)



Insights and Questions

• Using a regularized version of Isotonic Regression does not improve 
accuracy or AUC compared to regular Isotonic Regression

• But it does improve measures of calibration

• The main advantage of regularizing should be to reduce the amount 
of calibration data that is needed, but the authors did not study this 
question
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Summary of Miscalibration Behaviors

• Max Margin Methods (SVM, boosted trees):
• �̂�𝑝 concentrates near 0.5
• Sigmoid-shaped Reliability Diagram
• Platt (logistic regression) model fits well, learns quickly

• Naïve Bayes and Deep Nets
• �̂�𝑝 concentrates near 0 and 1; systematically optimistic
• Sigmoid model fits NB poorly; Isotonic regression is better
• Temperature Calibration worked better for Deep Nets

• Random Forests, Bagging, MLPs
• Naturally well-calibrated except at extreme probabilities
• Sigmoid model fits poorly
• Need lots of calibration data to obtain any improvements
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Closing Thoughts 

• Do we care equally about all parts of the �̂�𝑝 space?
• For high-confidence predictions

• We only care about large values of �̂�𝑝
• For anomaly detection

• We only care about very small values of �̂�𝑝
• For stock market trading

• We care about values of �̂�𝑝 = 0.5 + 𝜖𝜖
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Do we need to calibrate, or can we just 
threshold?
• That is the subject for Friday!
• Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. 

Journal of Machine Learning Research, 9, 371–421. Retrieved from 
http://arxiv.org/abs/0706.3188

• Cortes, C., DeSalvo, G., & Mohri, M. (2016). Learning with rejection. 
Lecture Notes in Artificial Intelligence, 9925 LNAI, 67–82. 
http://doi.org/10.1007/978-3-319-46379-7_5

• Papadopoulos, H. (2008). Inductive Conformal Prediction: Theory and 
Application to Neural Networks. Book chapter. 
https://www.researchgate.net/publication/221787122_Inductive_Co
nformal_Prediction_Theory_and_Application_to_Neural_Networks
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